
Sonali A.Wanjari et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 2, (Part -1) February 2015, pp.72-78

 www.ijera.com 72 | P a g e

Securely Data Forwarding and Maintaining Reliability of Data in

Cloud Computing

Sonali A.Wanjari*, Asst. Prof. Bharat Tidke**
*(Research Scholar, Department of Computer Network, Flora institute technology (FIT) Khopi, Pune-412205

Maharashtra, India)

** (Assistant Professor, Department of Computer Network, Flora institute technology (FIT) Khopi, Pune-

412205 Maharashtra, India)

ABSTRACT
Cloud works as an online storage servers and provides long term storage services over the internet. It is like a

third party in whom we can store a data so they need data confidentiality, robustness and functionality.

Encryption and encoding methods are used to solve such problems. After that divide proxy re-encryption

scheme and integrating it with a decentralized erasure code such that a secure distributed storage system is

formulated. The distributed storage system not only supports secure, robust data storage and retrieval but also

lets the user forward his data to another user without retrieving the data. A concept of backup in same server

allows users to retrieve failure data successfully in the storage server and also forward to another user without

retrieving the data back. This is an attempt to provide light-weight approach which protects data access in

distributed storage servers. User can implement all important concept i.e. Confidentiality for security,

Robustness for healthy data, Reliability for flexible data, Availability for compulsory data will be achieved to

another user which is store in cloud and easily overcome problem of “Securely data forwarding and

maintaining, reliability of data in cloud computing “using different type of Methodology and Technology.

Keywords - Homomorphic Encryption method, encoding method, proxy re-encryption scheme, decentralized

erasure code, cloud computing.

I. INTRODUCTION
With the advent of faster and better network

options and universal internet access many services

are available online anytime and anywhere access.

Cloud is a technology in which data is stored in

different servers. Cloud computing concepts are

used for managing data on a cloud. End Users may

not be aware of computing options. However, these

programs work without the knowledge of a user and

its controls and manage most of the data tasks.

Cloud computing is surrounded by many

security issues like securing data, examining the

utilization of cloud by the different cloud computing

vendors. Cloud computing is used to store a data in

cloud storage system so it provide robustness,

privacy and reliability.

Cloud storage system is a large-scale distributed

storage system that consists of many independent

storage servers. Data robustness is a major

requirement for storage systems. Each user usually

gives a secret key which is generated by him. The

user can store, forward and retrieve data in the cloud

only after using secret key. If the user loses his key,

he is blocked from the system. This system is used

to avoid unauthorized access to cloud database. The

authorized user may give a second chance to retrieve

his data. Therefore, when the user loses his secret

key twice then only he will be blocked from the

system. Because of the huge amount of data stored

by a cloud efficient processing and analysis of data

has become a big challenge.

Data robustness is a major requirement for

storage systems. There have been many proposals of

storing data over storage servers [1], [2], [3], [4].

One way to provide data robustness is to replicate a

message such that each storage server stores a copy

of the message. It is very robust because the message

can be retrieved as long as one storage server

survives. Another way is to encode a message of k

symbols into a code word of n symbols by erasure

coding. To store a message, each of its code word

symbols is stored in a different storage server. A

decentralized erasure code is an erasure code that

independently computes each code word symbol for

a message. Thus, the encoding process for a message

can be split into n parallel tasks of generating code

word symbols. A decentralized erasure code is

suitable for use in a distributed storage system. After

the message symbols are sent to storage servers,

each storage server independently computes a code

word symbol for the received message symbols and

stores it. This finishes the encoding and storing

process. Storing data in a Third party‟s cloud system

causes serious concern on data confidentiality. In

order to provide strong confidentiality for messages

in storage servers, a user can encrypt messages by a

RESEARCH ARTICLE OPEN ACCESS

Sonali A.Wanjari et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 2, (Part -1) February 2015, pp.72-78

 www.ijera.com 73 | P a g e

cryptographic method before applying an erasure

code method to encode and store messages. When he

wants to use a message, he needs to retrieve the code

word symbols from storage servers, decode them,

and then decrypt them by using cryptographic keys.

To well fit the distributed structure of systems; user

requires that servers independently perform all

operations. With this consideration, user proposes a

new threshold proxy re-encryption scheme and

integrates it with a secure decentralized code to form

a secure distributed storage system. The encryption

scheme supports encoding operations over encrypted

messages and forwarding operations over encrypted

and encoded messages. The tight integration of

encoding, encryption, and forwarding makes the

storage system efficiently meet the requirements of

data robustness, data confidentiality, and data

forwarding. Accomplishing the integration with

consideration of a distributed structure is

challenging. Our system meets the requirements that

storage servers independently perform encoding and

re-encryption and key servers independently perform

partial decryption [5].

II. LITERATURE SURVEY
The In [1] J. Kubiatowicz, et.al author produced

an urgent need for Persistent information. In this

paper presented Ocean Store, a Utility infrastructure

designed to span the globe and provide secure,

highly available access to persistent objects. Several

properties distinguish Ocean Store from other

systems: the utility model, the untrusted

infrastructure, support for truly nomadic data, and

use of introspection to enhance performance and

maintainability. A utility model makes the notion of

a global system possible, but introduces the

possibility of untrustworthy servers in the system.

To this end, assume that servers may be run by

Adversaries and cannot be trusted with clear text; as

a result, server side recently on encrypted

information. Nomadic data permits a wide range of

optimizations for access to information by bringing

it “close” to where it is needed, and enables rapid

response to regional outages and denial-of-service

attacks. These optimizations are assisted by

introspection, the continuous online collection and

analysis of access patterns. Ocean Store is under

construction. The Ocean Store system has two

design goals that differentiate it from similar

systems: The ability to be constructed from an

untrusted infrastructure and Support of nomadic

data.

In [2] P. Druschel and A. Rowstron, author

describes PAST, a large-scale, Internet based, global

storage utility that provides high availability,

persistence and protects the anonymity of clients and

storage providers. PAST is a peer-to-peer Internet

application and is entirely self-organizing. PAST

nodes serve as access points for clients, participate

in the routing of client requests, and contribute

storage to the system. Nodes are not trusted; they

may join the system at any time and may silently

leave the system without warning. Yet, the system is

able to provide strong assurances, efficient storage

access, load balancing and scalability. In [3] Adya,

W.J. Bolosky, M. Caistro, et.al author Far site is a

scalable, decentralized, network file system where in

a loosely coupled collection of insecure and

unreliable machines collaboratively establishes a

virtual file server that is secure and reliable. Far site

provides the shared namespace, location-transparent

access, and reliable data storage of a central file

server and also the low cost, decentralized security,

and privacy of desktop workstations. It requires no

central-administrative effort apart from signing user

and machine certificates. Far site‟s core architecture

is a collection of interacting, Byzantine-fault-tolerant

replica groups, arranged in a tree that overlays the

file-system namespace hierarchy. Because the vast

majority of file-system data is opaque file content,

Far site maintains only indirection pointers and

cryptographic checksums of this data as part of the

Byzantine-replicated state. Actual content is

encrypted and stored using raw (non-Byzantine)

replication; however, the architecture could

alternatively employ erasure-coded replication to

improve storage efficiency.

In [4] A. Haeberlen, A. Mislove, and P.

Druschel, author Decentralized storage systems

aggregate the available disk space of participating

computers to provide a large storage facility. These

systems rely on data redundancy to ensure durable

storage despite of node failures. However, existing

systems either assume independent node failures, or

they rely on introspection to carefully place

redundant data on nodes with low expected failure

correlation. Unfortunately, node failures are not

independent in practice and constructing an accurate

failure model is difficult in large-scale systems. At

the same time, malicious worms that propagate

through the Internet pose a real threat of large-scale

correlated failures. Such rare but potentially

catastrophic failures must be considered when

attempting to provide highly durable storage. In this

paper, Glacier describe, a distributed storage system

that relies on massive redundancy to mask the effect

of large-scale correlated failures. Glacier is designed

to aggressively minimize the cost of this redundancy

in space and time: Erasure coding and garbage

collection reduces the storage cost; aggregation of

small objects and a loosely coupled maintenance

protocol for redundant fragments minimizes the

messaging cost. In one configuration, for instance,

our system can provide six-nines durable storage

despite correlated failures of up to 60% of the

storage nodes, at the cost of an eleven-fold storage

Sonali A.Wanjari et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 2, (Part -1) February 2015, pp.72-78

 www.ijera.com 74 | P a g e

overhead and an average messaging overhead of

only 4 messages per node and minute during normal

operation.

In [5] H.Y. Lin and W.G. Tzeng, author

consider a cloud storage system consists of storage

servers and key servers. User integrates a newly

proposed threshold proxy re-encryption scheme and

erasure codes over exponents. The threshold proxy

re-encryption scheme supports encoding,

forwarding, and partial decryption operations in a

distributed way. To decrypt a message of k blocks

that are encrypted and encoded to n code word

symbols, each key server only has to partially

decrypt two code word symbols in our system. By

using the threshold proxy re-encryption scheme, a

secure cloud storage system that provides secure

data storage and secure data forwarding functionality

in a decentralized structure. Moreover, each storage

server independently performs encoding and re-

encryption and each key server independently

perform partial decryption. Our storage system and

some newly proposed content addressable file

systems and storage system are highly compatible.

In [6] D.R. Brown bridge, L.F. Marshall, and B.

Rendell, author paper a software subsystem that can

be added to each of a set of physically

interconnected UNIX or UNIX look-alike systems,

so as to construct a distributed system which is

functionally indistinguishable at both the user and

the program level from a conventional single

processor UNIX system. The techniques used are

applicable to a variety and multiplicity of both local

and wide area networks, and enable all issues of

inter-processor communication, network protocols,

etc., to be hidden. A brief account is given of

experience with such a distributed system, which is

currently operational on a set of PDP11s connected

by a Cambridge Ring.

In [7] A.G. Demakis, et.al author describe A

large-scale wireless sensor network of n nodes,

where a fraction k out of n generates data packets of

global interest. Assuming that the individual nodes

have limited storage and computational capabilities,

the problem is how to enable ubiquitous access to

the distributed data packets. Specifically, each node

can store at most one data packet, and study the

problem of diffusing the data so that by querying

any k nodes, it is possible to retrieve all the k data

packets of interest (with high probability).user

introduce a class of erasure codes and show how to

solve this problem efficiently in a completely

distributed and robust way. Specifically user can

efficiently diffuse the data by .pre-routing only O

(lnn) packets per data node to randomly selected

storage nodes. By using the proposed scheme, the

distributed data becomes available .at the fingertips

of a potential data collector located anywhere in the

network.

In [8] A.G. Dimakis, V. Prabhakaran, and K.

Ramchandran, author create problem of distributed

networked storage when there are multiple,

distributed sources that generate data that must be

stored efficiently in multiple storage nodes, each

having limited memory. A motivating application,

one can think of sensor networks where the sensor

measurements are inherently distributed and sensor

motes have constrained communication,

computation, and storage capabilities. In addition,

distributed networked storage can be useful for peer-

to-peer networks or redundant arrays of independent

disks (RAID) systems. The distributed sources are k

data nodes, each producing one data packet of

interest. Also assume n storage nodes that will be

used as a distributed network memory. If each

storage node can store one data packet, to diffuse the

data packets so that by querying any k storage nodes,

it is possible to retrieve all the k data packets of

interest (with high probability). The key issue, of

course, is whether it is possible to achieve this robust

distributed storage with minimal computation and

communication. To solve this problem, proposed

decentralized erasure codes, which are randomized

linear codes with a specific probabilistic structure

that leads to optimally sparse generator matrices.

These codes can be created by a randomized

network protocol where each data node “pre-routes”

its data packet O (log n) randomly and

independently selected storage nodes each storage

node creates a random linear combination of

whatever it happens to receive. Therefore each node

operates autonomously without any central points of

control and with small communication cost. The

problem of constructing an erasure code for storage

over a network when the data sources are

distributed. Specifically, assume that there are n

storage nodes with limited memory and k < n

sources generating the data. User want a data

collector, who can appear anywhere in the network,

to query any k storage nodes and be able to retrieve

the data.

In [9] G. Ateniese, K. Fu, et.al author allows a

proxy to transform a cipher text computed under

Alice‟s public key into one that can be opened by

Bob‟s secret key. There are many useful applications

of this primitive. For instance, Alice might wish to

temporarily forward encrypted email to her

colleague Bob, without giving him her secret key. In

this case, Alice the delegator could designate a

proxy to re-encrypt her incoming mail into a format

that Bob the delegate can decrypt using his own

secret key. Alice could simply provide her secret key

to the proxy, but this requires an unrealistic level of

trust in the proxy. User presents several efficient

proxy re-encryption schemes that offer security

improvements over earlier approaches. The primary

advantage of our schemes is that they are and do not

Sonali A.Wanjari et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 2, (Part -1) February 2015, pp.72-78

 www.ijera.com 75 | P a g e

require delegators to reveal their entire secret key to

anyone – or even interact with the delegate – in

order to allow a proxy to re-encrypt their cipher

texts. In our schemes, only a limited amount of trust

is placed in the proxy. This enables a number of

applications that would not be practical if the proxy

needed to be fully trusted. User provides the first

empirical performance measurements of applications

using proxy re-encryption.

In [10] Q. Tang, author recently, the concept of

proxy re-encryption has been shown very useful in a

number of applications, especially in enforcing

access control policies. In existing proxy re-

encryption schemes, the delegate can decrypt all

cipher texts for the delegator after re-encryption by

the proxy. Consequently, in order to implement fine-

grained access control policies, the delegator needs

to either use multiple key pairs or trust the proxy to

behave honestly. In this paper, user extends this

concept and proposes type-based proxy re-

encryption, which enables the delegator to

selectively delegate his decryption right to the

delegate while only needs one key pair. As a result,

type-based proxy re-encryption enables the delegator

to implement fine-grained policies with one key pair

without any additional trust on the proxy. User

provides a security model for our concept and

provides formal definitions for semantic security and

cipher text privacy which is a valuable attribute in

privacy-sensitive contexts. User proposes two type-

based proxy re-encryption schemes: one is CPA

secure with cipher text privacy while the other is

CCA secure without cipher text privacy.

In [11] G. Ateniese, K. Benson, and S.

Hohenberger, author allows a proxy to convert a

cipher text encrypted under one key into an

encryption of the same message under another key.

The main idea is to place as little trust and reveal as

little information to the proxy as necessary to allow

it to perform its translations. At the very least, the

proxy should not be able to learn the keys of the

participants or the content of the messages it re-

encrypts. However, in all prior PRE schemes, it is

easy for the proxy to determine between which

participants a re-encryption key can transform cipher

texts. In this work, users propose key private re-

encryption keys as an additional useful property of

PRE schemes. A definition of what it means for a

PRE scheme to be secure and key-private.

In [12] C. Wang, Q. Wang, et.al author show

how to divide data D into n pieces in such a way that

D is easily reconstruct able from any k pieces, but

even complete knowledge of k - 1 piece reveals

absolutely no information about D. This technique

enables the construction of robust key management

schemes for cryptographic systems that can function

securely and reliably even when misfortunes destroy

half the pieces and security breaches expose all but

one of the remaining pieces.

III. SYSTEM MODEL
In Figure 3 shows the Existing Architecture System.

Here describe the decentralized erasure code

which is used to split up the messages or text data

into n number of blocks. This is used for splitting

purpose. In this paper the results n=AKC allows that

number of storage server be greater than the number

of blocks of a text data‟s. The encoding method for a

message can be split into n parallel tasks of

generating codeword symbols. A decentralized

erasure code is used in a distributed storage system.

The n blocked message is stored in for the

integration process.

In an integration processes, the divided message

is joined into an m number of blocks, and stored into

larger storage server. User A encrypts his message

M is decomposed System Model into k number of

blocks m1, m2, …. Mk and which has an identifier

ID. User A encrypts each block mi into a cipher text

Ci and sends it to v randomly chosen storage servers.

Upon receiving cipher texts from a user, each

storage server linearly combines them with

randomly chosen coefficients into a code word

symbol and stores it. Integration is used to combine

messages into m number of block, which is

encrypted and stored into a large number storage

server. Then forward to user B. Data which is

encrypted by using single key. This is produced by

using hash key algorithm. In the data storage phase,

user A encrypts his message M and dispatches it to

storage servers. A message M is decomposed into k

number of blocks m1, m2.., Mk and which has an

identifier ID. User A encrypts each block mi into a

cipher text Ci and sends it to v randomly chosen

storage servers. Upon receiving cipher texts from a

user, each storage server linearly combines them

with randomly chosen coefficients into a code word

symbol and stores it.

IV. Proposed Work
In Objective of this model is achieve the

reliability of the software and increases role of

distributed storage servers. Objectives are to manage

and improve:

Sonali A.Wanjari et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 2, (Part -1) February 2015, pp.72-78

 www.ijera.com 76 | P a g e

1. Data should be encrypted before stored.

2. Data divide into multiple parts before storing

3. Data should be re-encrypt while forwarding

4. After re-encrypt secrete key must be generated

5. Create back up of stored Data in same

distributed servers

SET THEORY ANALYSIS:

Let „S‟ be the communication system S= {L,

W}; L – LAN Connection- Wi-Fi Connection,

Identify the inputs I= {A, F, SK, PK, T} Where-

A=Authority= File that user wants to upload on the

Storage; SK= Secrete Key of New User; PK= Public

Key; T = Tokens.

Identify the Outputs: Let O be the se of outputs O =

{D, P, F} Where-D= Download File; P=Private Key;

F=Forward File.

Identify set of Function: Let F be the set of

Functions-F= {F1, F2, F3, F4} Where-F1 – Upload

File; F2 – Encrypt File;F3- Generate Public and

Private Key;F4- Download Own File;F5- Forward

File; F6- Get Secrete Key; F7- Download Forwarded

File.

Final State-Fs =All communication is done. Failure

case-FL=Network failure. Constraints -Ф be the

constraints Ф= {N} Where N= Number of Servers

V. Algorithm

1. Key Generation phase using RSA (Rivest

Shamir Adelman) Algorithm

In Figure.1 shows the Key Generation Phase.

Here describes the Algorithm two key requires one

is public key and another is Private Key. While

encryption public key is required and during

Decryption public (PKA) and secret key (SKA) both

are required.

2. Data Storage Algorithm

In Figure 2 shows the Flowchart for Data

Storage. Here describes the algorithm user A

encrypts his message M and dispatches it to storage

servers. A message M is decomposed into k blocks

m1; m2; . . .; Mk and has an identifier ID. User A

encrypts each block mi into a cipher text Ci and

sends it to v randomly chosen storage servers. Upon

receiving cipher texts from a user, each storage

server linearly combines them with randomly chosen

coefficients into a code word symbol and stores it.

3. Data forwarding Algorithm

The data forwarding phase shown in Figure 3,

user A forwards his encrypted message with an

identifier ID stored in storage servers to user B such

that B can decrypt the forwarded message by his

secret key. To do so, a uses his secret key SKA and

B‟s public key PKB to compute a re-encryption key

RKID A! B and then sends RKID A! B to all storage

servers. Each storage server uses the re encryption

key to re-encrypt its code word symbol for later

retrieval requests by B. The re-encrypted code word

symbol is the combination of cipher texts under B‟s

public key. In order to distinguish re-encrypted code

word symbols from intact ones, call them original

code word symbols and re encrypted code word

symbols, respectively.

4. Data Retrieve Algorithm

In Figure 4. Shows the Flow Chart of Data

Retrieving. Here describes user A requests to

retrieve a message from storage servers. The

message is either stored by him or forwarded to him.

User A sends a retrieval request to key servers. Upon

receiving the retrieval request and executing a

Sonali A.Wanjari et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 2, (Part -1) February 2015, pp.72-78

 www.ijera.com 77 | P a g e

proper authentication process with user A, each key

server K Si requests u randomly chosen storage

servers to get code word symbols and does partial

decryption on the received code word symbols by

using the key share SK Ai. Finally, user A combines

the partially decrypted code word symbols to obtain

the original message M.

5. Data reliability Algorithm

In Figure5 shows the Diagram of Data

Reliability. Here describes the algorithm of creating

backup of each file part and stored into server due to

which if one of the server gets fail due to back up

got our complete file.

VI. CONCLUSION
Storing data in a third party‟s cloud system

causes serious concern over data confidentiality.

General encryption schemes protect data

confidentiality, but also limit the functionality of the

storage system because a few operations are

supported over encrypted data. Constructing a secure

storage system that supports multiple functions is

challenging when the storage system is distributed

and has no central authority. By using a threshold

proxy re-encryption scheme and integrate it with a

decentralized erasure code such that a secure

distributed storage system is formulated. The

distributed storage system not only supports secure

and robust data storage and retrieval, but also lets a

user forward his data in the storage servers to

another user without retrieving the data back. The

proxy re-encryption scheme supports encoding

operations over encrypted messages as well as

forwarding operations over encoded and encrypted

messages and generate re-secrete key. Our method

fully integrates encrypting, encoding, and

forwarding. User analyses and suggest suitable

parameters for the number of divided of a message

dispatched to different storage servers and the

number of storage servers queried by a key server.

These parameters allow more flexible adjustment

between the number of storage servers and

robustness. The main technical contribution is that if

secure storage server is failure by any type attack

then same secure storage server can create backup so

user can get failure data completely and

successfully.

REFERENCES

[1] J. Kubiatowicz, D. Bindel, et.al, “Ocean

store: An Architecture for Global-Scale

Persistent Storage,” Proc. Ninth Int’l Conf.

Architectural Support for Programming

Languages and Operating Systems

(ASPLOS), pp. 190-201, 2000.

[2] P. Druschel and A. Rowstron, “PAST: A

Large-Scale, Persistent Peer-to-Peer

Storage Utility”, Proc. Eighth Workshop

Hot Topics in Operating System (HotOS

VIII), pp. 75-80, 2001.

[3] A. Adiya, W.J. Bolosky, M. Castro, G.

Cermak, R. Chaiken, J.R. Douceur, J.

Howell, J.R. Lorch, M. Theimer, and R.

Wattenhofer, “Farsite: Federated,

Available, and Reliable Storage for an

Incompletely Trusted Environment,” Proc.

Fifth Symp. Operating System Design and

Implementation (OSDI), pp. 1-14, 2002.

[4] A. Haeberlen, A. Mislove, and P. Druschel,

“Glacier: Highly Durable, Decentralized

Storage Despite Massive Correlated

Failures,” Proc. Second Symp. Networked

Systems Design and Implementation

(NSDI), pp. 143-158, 2005.

[5] H.-Y. Lin and W.-G. Tzeng, “A Secure

Decentralized Erasure Code for Distributed

Network Storage,” IEEE Trans. Parallel

and Distributed Systems, vol. 21, no. 11,

pp. 1586-1594, Nov. 2010.

[6] D.R. Brownbridge, L.F. Marshall, and B.

Randell, “The Newcastle Connection or

Unixes of the World Unite!” Software

Practice and Experience, vol. 12, no. 12,

pp. 1147-1162, 1982.

[7] A.G. Dimakis, V. Prabhakaran, and K.

Ramchandran, “Ubiquitous Access to

Distributed Data in Large-Scale Sensor

Networks through Decentralized Erasure

Sonali A.Wanjari et al. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 2, (Part -1) February 2015, pp.72-78

 www.ijera.com 78 | P a g e

Codes,” Proc. Fourth Int’l Symp.

Information Processing in Sensor Networks

(IPSN), pp. 111-117, 2005.

[8] A.G. Dimakis, V. Prabhakaran, and K.

Ramchandran, “Decentralize Erasure

Codes for Distributed Networked Storage,”

IEEE Trans. Information Theory, vol. 52,

no. 6 pp. 2809-2816, June 2006.

[9] M. Mambo and E. Okamoto, “Proxy

Cryptosystems: Delegation of the Power to

Decrypt Cipher texts,” IEICE Trans.

Fundamentals of Electronics, Comm. and

Computer Sciences, vol. E80-A, no. 1, pp.

54-63, 1997.

[10] G. Ateniese, K. Fu, M. Green, and S.

Hohenberger, “Improve Proxy Re-

Encryption Schemes with Applications to

Secure Distributed Storage,” ACM Trans.

Information and System Security, vol. 9, no.

1, pp. 1-30, 2006.

[11] Q. Tang, “Type-Based Proxy Re-

Encryption and Its Construction,” Proc.

Ninth Int’l Conf. Cryptology in India:

Progress in Cryptology (INDOCRYPT), pp.

130-144, 2008.

[12] G. Ateniese, K. Benson, and S.

Hohenberger, “Key-Private Proxy Re-

Encryption,” Proc. Topics in Cryptology

(CT-RSA), pp. 279-294, 2009

